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ABSTRACT: This paper is aimed at assessing the performance of a remote hybrid PV/diesel system located on the 
Island of Kri in Papua, Indonesia. For this purpose, monitoring data of electrical variables at 5 minutes recording 
intervals were used. Using the INSEL simulation environment, in-plane irradiance (Gi) was modeled from global 
horizontal irradiance (Gh) data from five weather stations at various distances from the hybrid PV system. Also, PV 
module temperature (Tm) was predicted from ambient temperature (Ta) and wind speed (v) according to the Sandia 
model for module temperature. The performance of the PV element of the hybrid system was compared with data from 
another PV system in Jayapura (also in Papua) which is grid-connected. We found that the performance ratio (PR) of 
the PV systems in Kri and Jayapura during the observation period were 41% and 90%, respectively. We also found that 
data from remote weather stations with a distance of up to 100 km from the reference PV system could be used to get 
the same PR values. However, with greater distance, the PR deviates non-linearly in the range of 20% to 50%, which 
is in line with previous findings indicating no correlation occurs. Our advice is, therefore, to apply local irradiance 
monitoring at PV sites instead of extrapolating irradiance over significant distances.  
Keywords: Grid-Connected, Modelling, Monitoring, Performance, PV System, Rural Electrification. 
 

 
1 INTRODUCTION 
 

For many years, diesel generators (gensets) have been 
used for producing electricity in remote areas of 
Indonesia. However, they have high operation and 
maintenance costs, create noise, cause pollution, and 
emit carbon dioxide (CO2) [1]. Given the increasing costs 
of diesel fuel and decreasing costs of PV modules, hybrid 
PV/diesel have become favorable alternatives for diesel 
gensets. They are economically viable for 15-20 years of 
project lifetimes [2], especially in rural areas and remote 
islands [3]. 

Highly performing hybrid PV systems are required 
and therefore, understanding their performance is 
important for further improvements. However, the 
essential variables that are needed for analyzing their 
performance are not always measured on-site. This 
especially applies to small hybrid PV systems [4] for 
which monitoring systems are considered to be too 

expensive. Alternatively, their performance can be 
assessed using data from other locations, such as 
meteorological stations or other PV systems that are 
monitored [5].  

Based on that background, this study evaluates the use 
of remote data to estimate the performance of a selected 
hybrid PV system in Indonesia. This study proposes a 
modeling and statistical approach for performance 
analysis of a PV system with incomplete on-site datasets. 
The procedure involves two PV systems and seven 
automatic weather stations (AWS) of the Indonesian 
Agency for Meteorological, Climatological and 
Geophysics (BMKG) which are available online (Figure 
1).  

This study is relevant for Indonesia because 
Indonesia lacks best practices in implementing PV 
systems while these could be a proper alternative power 
source for thousands of communities in rural areas or 
small islands. 

 
Figure 1:  Locations of PV systems and the automatic weather stations. 
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2 MONITORING AND METHODS 
 
2.1 Hybrid PV/diesel system on Kri Island 

The hybrid system on the island of Kri (0º 557 'S, 
130º685 'E) in the Raja Ampat Regency, the Province of 
West Papua, Indonesia, consists of three PV arrays with a 
total capacity of 28.8 kWp and two 42 kVA and a 60 kVA 
Yanmar gensets connected in an AC-coupled 
configuration (see Figure 2). The PV arrays are ground-
mounted close to the equator with 15º tilted angle to the 
North (two arrays) and to the South (one array). Each array 
consists of 6 panels which contain 8 monocrystalline PV 
modules of 200 Wp from Sky Energy. Every two panels 
are connected to one inverter from Murata. 

 

 
Figure 2:  Schematic diagram of the hybrid PV/diesel 
systems on Kri Island, reproduced with permission of 
Murata. Photo credits: Kri Eco Resort (Herbert Innah). 

 
Being a diving resort, two main electrical loads on Kri 

include the resort load and the compressor load. The resort 
load comes from guest accommodations, restaurant, 
offices, and workshop located at two locations namely Kri 
Eco Resort and Sorido Bay Resort. The two resorts are 
about 700 m apart. The compressor load comes from three 
compressors for filling the compressed air tanks for divers. 
The energy management system (EMS) of Murata 
measures power and energy from the PV panels, gensets, 
and loads with 5 minutes recording intervals. However, 
global in-plane irradiance (Gi) and PV module temperature 
(Tm) were not measured on-site. 

 
2.2 Grid-connected PV system in Jayapura 

As a reference, a 34 kWp grid-connected PV system has 
been operating since 2012 in the City of Jayapura (2º562 'S, 
140º692 'E) for research purpose and has been extensively 
monitored and analyzed [6-8]. The PV modules are tilted 
10º to the North. It consists of four arrays of different sizes 
and types of PV modules. Due to the availability of data, in 
this study, we use only the 7 kWp array of micro-amorphous 
silicon modules (Ample Sun) which are connected to an 
SMA Sunny Mini Central (SMC) inverter.  

All variables for performance analysis were measured 
on-site at a recording interval of 5 minutes for electrical 
variables and 1 minute for meteorological variables. They 
include the following variables: total energy production, 
currents, power, voltage, global horizontal irradiance (Gh), 
global in-plane irradiance (Gi), ambient temperature (Ta), 
and PV module temperature (Tm). 
 
2.3. Automatic weather stations (AWS) 

Data from seven AWSs were used as modeling inputs. 
Three variables monitored by the AWSs used in this study 

include Gh, Ta, and wind speed (v). The data sampling 
varies from one sensor to others, but the recording 
intervals were the same, namely 10 minutes.  

Because the timeframe of the available data from the 
PV systems at Kri and Jayapura do not match one and 
each other, we selected only AWSs that provide data in 
similar time frames. Therefore, the AWS stations used 
for the performance analysis of PV system in Jayapura 
are different to the AWS stations used for the analysis of 
PV system in Kri. As shown in Figure 1, stations with 
green background refer to Kri and orange refer to 
Jayapura. To model the Gi and Tm for the performance 
analysis of power system at Jayapura, data from AWSs 
at Lereh, Timika, and Labuha with the distance of 100 
km, 475 km, and 1,500 km, respectively, from PV system 
at Jayapura, will be used. Also, the AWSs at Sorong, 
Labuha, Manokwari, Timika and Jayapura with the 
distances of 70 km, 355 km, 375 km, 820 km, and 1,147 
km respectively, from Kri island, will be used to model 
the Gi and Tm for the performance analysis of power 
system at Kri, see Figure 1. 

The big distances among the PV systems and the AWSs 
are proportionate to the size of Indonesia which lies over 
more than 5,000 km length from its easternmost to its 
westernmost.  

 
2.4. Modeling Gi from Gh 

Some models offer validated approaches of estimating 
Gi from the Gh. Each model differs from others depending 
on how the diffuse fraction of the solar irradiance is 
handled. The Liu and Jordan model [9], for example, 
assumes an isotropic distribution over the complete 
skydome, while Hay [10] assumes a brightening of the 
horizon band and the circumsolar region [11].  

In general, modeling the Gi from Gh involves two 
steps. First, the decomposition of Gh to its direct and 
diffuse components. Second, the transposition of these 
components to Gi. The conversion has a typical 
uncertainty of 2% to 5% [12]. 

In this study, we evaluated 60 combinations of 
decomposition and transposition models available in 
INSEL® software. INSEL is a simulation tool that uses 
block diagram for engineering programming, including 
applications of the renewable energy sector, which is 
mainly intended for use in research and education [13]. 

 
2.5. Modelling Tm from Ta and v 

Because the PV module temperature (Tm) is often not 
measured on-site in many PV systems, including in Kri, 
we use the Sandia Module Temperature Model (SMTM). 
SMTM uses Ta and v as inputs to predict the Tm. 

The Tm according to the SMTM is given by: 
 
𝑇𝑚 = 𝐺. (𝑒𝑎+𝑏.𝑣) + 𝑇𝑎 …….…………..………... (1) 
 
where a and b are parameters that depend on the 

module construction and materials as well as on the 
mounting configuration of the module. A more detailed 
explanation about the SMTM including the values of a 
and b can be found at the Sandia Laboratories website 
[14]. 

 
2.6. Performance assessment 

Performance assessment of the hybrid PV system and 
the reference system was be conducted according to 
monitoring standard IEC 61724 [5]. Figure 3 shows the 
complete procedure applied in this study which involves 
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the modeling of the Gi and Tm, and the calculations of the 
performance of the PV systems. The performance 
assessment will involve two main operations. First, using 
the Gh as input, the Gi will be calculated using INSEL. 
Then, using the Ta and v, Tm will be modeled according to 
the Sandia Temperature Model [14]. This step will be first 
applied to the reference PV system in Jayapura.  

Second, based on the results from the first step, the 
performance of the PV system in Jayapura and Kri be 
calculated. This process will use the modeled Gi and Tm 
and measurement data from each PV system.  

The procedure used to calculate the performance 
analysis according to IEC 61724 was developed in Python 
environment. 

 

Modelled 
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Performance 
analysis of hybrid 
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Figure 3:  Flowchart of the method.  
 
2.7. Treatment to the datasets 

All irradiance values, either measured or modeled, 
which lie beyond 10 W/m2 and 1500 W/m2 have been 
removed from the datasets. The reason for this is because 
the former is prone to error due to extraneous night-time 
data values and the latter is because it is too high. Further, 
all the daytime data, between 06:00 and 18:00 local time, 
were kept for the analysis. All missing data were excluded 
from the analysis. 

For the ambient temperature, only values between -40 
and 60 ºC were used. For the module temperature, values 
between ambient and ambient plus 40 ºC were used 
because the studied PV systems are open rack-mounted 
systems. As such, any Tm values lower than Ta that might 
occur in the early morning due to irradiation to the sky 
were not included in the analysis. 

For the electrical data of the PV system, the values used 
for the array voltage only those between 0 and 1.3 x Voc of 
the array under STC. Also, the array current values between 
0 and 1.5 x Isc under STC were used in the analysis. Various 
Python codes were written for managing the data. 

 
 

3. RESULTS AND DISCUSSION 
 

As shown in Table I, weather data from seven remote 
weather stations and electrical data from two PV systems 
were used in this study. Weather data four stations were 
used for performance analysis of PV system at Jayapura 
(15 January to 15 March 2015), while data from five 
stations were used for PV system at Kri ( :20 September 
2017 to 20 February 2018). Data from Labuha and Timika 
were commonly used for performance analysis of both PV 
systems. 

All data have been checked for consistency and gaps 
to identify obvious anomalies. All nighttime data (between 

18:05 and 15:55) have been excluded from the analysis, 
including outliers and discovered missing data. 

 
Table I: Data locations and measured variables  

 
Location  Measured Record Time  
 Variables Interval Period 
  (min) 
1. Jyp (AWS)  Gh, Ta, v 10 20/9/17-20/2/18 
2. Jyp (PV) ETot, Iac, IPV,  5 15/1/15-15/3/15 

 Pac, Vac, VPV   
3. Jyp (AWSPV)  Gh, Gi, Ta, Tm 1 15/1/15-15/3/15 
4. Kri (PV) LR, LC, PDG,  5 20/9/17-20/2/18 
 PPV,ER, EC,   
 EDG, EPV 
5. Labuha Gh, Ta, v 10 15/1/15-15/3/15 
   20/9/17-20/2/18 
6. Lereh Gh, Ta, v 10 15/1/15-15/3/15 
7. Manokwari Gh, Ta, v 10 20/9/17-20/2/18 
8. Sorong Gh, Ta, v 10 20/9/17-20/2/18 
9. Timika Gh, Ta, v 10 15/1/15-15/3/15 
   20/9/17-20/2/18 
 
Jyp: Jayapura; L: Load (kW); P: Power output (kW); R: 
Resort; C: Compressor; DG: Diesel genset; PV: PV 
array; E: Energy (kWh); AWS: automatic weather station 
of BMKG, AWSPV: automatic weather station included in 
a PV system. 

 
3.2. Dealing with missing parameters 
3.2.1. Tilted irradiance 

An INSEL model was developed to convert Gh to Gi 
using 60 combinations of decomposition and transposition 
models. First, the horizontal extraterrestrial irradiance (Io) 
was extracted using Gh measured by the AWS during the 
 as input. Second, using the Gh and Io, the diffuse 
component (Id) of the irradiance was generated.  

Third, the Gi was produced with inputs of Gh, Id, tilted 
angle, azimuth degree, and ground reflectance. The last 
step can also generate other elements of irradiation, 
namely tilted beam radiation, tilted Id, and tilted ground 
reflected radiation, but they were not used in this study. 

Only 46 of 60 model combinations have produced 
acceptable results, while all models containing the 
Gueymard transposition model [15] were excluded 
because they gave very small or very large values in this 
particular study. 

In the analysis, we found that the combination of Reindl 
Beckman and Dufie (RB) [16] and Willmott (WM) [17] 
models performs best in this study. However, their 
capability cannot be generally justified over the other 
model combinations because we tested them only at one 
location. Therefore, for further analysis in this study, we 
use the commonly accepted Orgill & Hollands (OH) [18] 
decomposition model and Perez (PZ) [19] transposition 
model instead [20]. Some other model combinations give 
small variation in their results. 

The comparison of all modeled Gi with ground 
measurements was assessed using scatter plots, and on the 
basis of the coefficient of determination of linear 
regression (R2) and root mean square error (RMSE), where 
the measured Gi was used as the reference data. Figure 4  
shows small differences of R2 ranging between 0.70 and 
0.99 with the mean value equal to 0.97. A wide range of 
RMSE from 16.98 to  201.24 takes place with the 
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contribution from the Gueymard transposition model. 
However, the mean RMSE was 31.36.  

Figure 5 shows a simple linear fitting between the 
measured Gh and measured Gi from Jayapura. It shows a 
small difference between the two data sets with the R2 of 
0.98284. This occurs because the study location is near 
the equator. This also indicates that modeling Gi from Gh 
in the equatorial region would be interesting only if a 
detailed evaluation is of importance. However, for 
further analysis in this study, we use the modeled Gi to 
give a better result. 

 

 
Figure 5:  Scatterplot of the measured global horizontal 
irradiance  (Gh) versus the global tilted irradiance (Gi) 
based on data from the PV system in Jayapura (15 January 
– 15 March 2015). 
 

Next, the comparison statistics of the measured Gi in 
Jayapura to the modeled Gi from remote AWSs were 
separately calculated to assess whether these statistics 
were dependent on location. The statistical significance of 
the differences in the comparison statistics derived for the 
weather stations was tested using the two-sided paired 
linear fitting tests. Figure 6 shows significant reductions in 
the R2 values. Referring to Gi in Jayapura, R2 value for 
Lereh was 0.48411, 0.32156 for Timika, and 0.30392 for 
Labuha (a). The distances, however, do not correlate with 
the fitness of the Gi datasets (b and c). 

 
(a) 

 

 
(b) 

 
(c) 

 
Figure 6:  The measured versus the modeled tilted 
irradiances respectively based on data from PV system in 
Jayapura and remote AWSs; (a) R2 of measured Gi and 
modeled Gi, (b and c) relation of R2 and the distance. 
 
3.2.2. PV module temperature 

The SMTM has been applied to predict the Tm using 
the Ta and v as inputs. Further, the similar statistical 
approach used for analyzing the Gi (see Sec. 3.2.1) was 
also applied to analyze the Tm.  

Although the previous datasets showed for the Gi were 
not linearly fit, the hourly means of Gi (daytime) were 
close to one and each other. This also applies to Tm as 
shown in Tabel II and Figure 7. 

 
3.3. Performance of the PV systems 

The performance of the PV system in Jayapura has 
been extensively monitored and analyzed as appear in the 
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Figure 4:  Modelled Gi versus measured Gi on the basis of R2 and RMSE from Jayapura. 
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publications [6-8]. In general, the present analysis 
produces the same performance ratios (PR) as those 
publications. 
 
Table II: The hourly averaged values of Gh, Gi, and Tm 

 
Location Gh Gi Tm  
Jayapura (PV) 368 353  39 
Jayapura (AWS) 385 348  39 
Labuha 452 441  39 
Lereh 338 332  36 
Manokwari 405 384  41 
Sorong 394 348  38 
Timika 419 394  40 
 
R2 values from Jayapura (AWS), Labuha, Manokwari, and 
Timika are referred to Sorong. R2 values from Labuha, 
Lereh, and Timika are referred to Jayapura. 
 

 
Figure 7:  The hourly averaged values of Gh, Gi, and Tm 
 

Figure 8 shows the weekly PR calculated using five 
meteorological stations. They were calculated based on 
eight weeks of measurements from 22 January 2015. For 
the calculation, the PV system in Jayapura was used as the 
reference. According to the IEC 61724 [5], data during 
system unavailability were excluded from the analysis. 
Therefore some missing points can be observed on the 
graph.  

 

 
Figure 8: The weekly PR calculated based on data from 
the reference system in Jayapura and five remote 
meteorological stations (22 January - 15 March 2015). 

 
As shown in Figure 8, the measured data show PR of 

90% which was very close to PR 91% as reported in 

previous studies [6-8]. We found that, as expected, the 
PRs calculated using data from AWSs in Jayapura and 
Lereh were very close to 90% because they are relatively 
closely located, namely 3 km and 100 km from the 
reference PV system, respectively. However, with the 
distance above 100 km, the same PR of 70% was 
observed, although the great difference of distance from 
Timika and Labuha to the reference system exists (475 
km and 1500 km for Timika and Labuha, respectively). 
Therefore, it can be concluded that with the distance 
greater distance 100 km, the correlation between the Gh 
and Gi cannot be observed. 

Figure 9 shows the weekly PR calculated using 22 
weeks data from five meteorological stations measured 
from 20 September 2017 to 20 February 2018. Because the 
PV system at Kri does not measure meteorological 
parameters on-site, the Gi and Tm were taken from AWS 
measurement in Sorong which is 70 km separated by sea 
from Kri. The data regarding power production from the 
PV system at Kri, however, was measured on-site. 

 

 
Figure 9: The weekly PR calculated based on data from 
the reference system in Sorong and four remote 
meteorological stations (20 September 2017 - 20 February 
2018). 

 
As shown in Figure 9, the mean PR of PV system in 

Kri using the reference meteorological data in Sorong is 
41% (solid line). The PR calculated based on modeled 
data from other remote AWSs (dash lines) were 48%, 
42%, 43%, and 50% for Manokwari, Labuha, Timika, 
and Jayapura, respectively. The distance from Sorong to 
Manokwari, Labuha, Timika, and Jayapura are 310 km, 
420 km, 750 km, and 1077 km, respectively. Again, 
distances from the source of data and the reference 
system do not show any correlation in the calculation of 
PR.  

There are three possible reasons for the low PR of the 
PV system at Kri. First, the value of the PR depends on the 
local energy consumption on the island. It means that the 
loads do not always utilize the produced energy from the 
PV array. Second, the efficiency of the system component, 
particularly the inverter. The inverter used at Kri is a new 
model with no information about its efficiency. Third, the 
measurement accuracy issues both from the PV system 
and from the AWSs. 

However, if compared to the PR of other stand-alone 
PV systems, the PR of the PV system at Kri lies in the 
correct range. The majority of stand-alone PV systems 
have PR ranging from 0.3 and 0.4 [21]. 
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4. CONCLUSION 
 

In the absence of in-plane irradiance and PV module 
temperature, the performance of the PV system can still be 
estimated using the global horizontal irradiance and 
ambient air temperature and wind speed, respectively. This 
approach has been applied in this study under the tropical 
climate of Indonesia. A 34 kWp grid-connected PV system 
in Jayapura, Papua, was used as a reference system. The 
analysis results from the reference PV system was applied 
for predicting the performance of a 28.8 kWp PV array, 
which is part of a hybrid power system on a remote island 
of Kri in Raja Ampat, West Papua.  

It has been found that the PR of PV system in Jayapura 
was 90%. We also found that using data from remote AWS 
with the distance up to 100 km from the reference PV 
system produce the same result. However, with distance 
more than that, the PR deviate in the range from 20% to 
50%, which is in line with previous findings indicating no 
correlation occurs. Our advice is, therefore, if possible, to 
always apply local irradiance monitoring at PV sites instead 
of extrapolating irradiance over significant distances. 

The PR of the hybrid PV system at Kri was 41% which 
is characteristics for stand-alone PV systems including in 
Indonesia [21].  
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