

INSTITUT TEKNOLOGI NASIONAL YOGYAKARTA FAKULTAS VOKASI

PROGRAM STUDI TEKNIK MESIN DIII PROGRAM STUDI TEKNIK ELEKTRONIKA DIII

Jl. Babarsari, Caturtunggal, Depok, Sleman, Yogyakarta 55281 Telp. (0274) 485390, 486986, 487540 Fax. (0274) 487249 Email: info@itny.ac.id, Website: www.itny.ac.id

No : 15/ITNY/FV/V/2021

Hal : Permohonan menjadi pembicara webinar

Lamp. : 1 lembar

Kepada Yth:

Dr. Kunaifi, S.T., PgDipEnSt., M.Sc.

Dosen Teknik Elektro Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau di Pekanbaru.

Dengan Hormat,

Sehubungan dengan akan diadakannya webinar dengan tema Trend Energi Masa Depan (*The Future Energy Trend*), yang insya Allah akan dilaksanakan besok pada :

Hari, tanggal : Sabtu, 29 Mei 2021

Jam : 10.00 WIB sampai selesai

Tempat : secara online dengan aplikasi Zoom

maka dengan ini kami memohon kiranya Bapak Dr. Kunaifi, S.T., PgDipEnSt., M.Sc.. berkenan untuk menjadi pembicara

Demikian surat permohonan kami, atas terlaksananya permohonan ini kami ucapkan banyak terimakasih.

Yogyakarta, 21 Mei 2021 Likologi NASiona Dokan Fakultas Vokasi

> FAKULTAS VOKASI

> > **Vugino, ST., MT.** NIK : 1973 0085

Tembusan:

- 1. Rektor ITNY
- 2. Arsip.

Sertifikat

Diberikan kepada

Dr. Kunaifi, S.T., PgDipEnSt., M.Sc.

Atas partisipasinya sebagai

Pembicara

pada Webinar "Tren Energi Masa Depan" di Fakultas Vokasi Institut Teknologi Nasional Yogyakarta dengan materi :

Preparing a Large-Scale PV Power Plant Feasibility Study

yang dilaksanakan pada Sabtu, 29 Mei 2021

oginas/ogyakarta, 29 Mei 2021

Tugino, S.T., M.T.

Dekan Fakultas Vokasi ITNY

FAKULTAS VOKASI

STUDI KELAYAKAN PLTS ON-GRID SKALA MEGAWATT

KUNAIFI

Webinar Trend Energi Masa Depan Institut Teknologi Nasional Yogyaarta 29 Mei 2021

OUTLINE

- Bio
- PLTS terpusat dan PLTS on-grid
- Lokasi instalasi PLTS
- Fase proyek PLTS skala besar
- Mengapa perlu FS PLTS skala utilitas
- Indikator kelayakan
- Panduan penyusunan FS
- Survei Lokasi

- Shading analisis
- Data meteorologi
- Analisis produksi energi
- Analisis finansial (detail)
- Format laporan FS
- Contoh laporan FS (cuplikan)

BIO

PLTS TERPUSAT VS ON-GRID

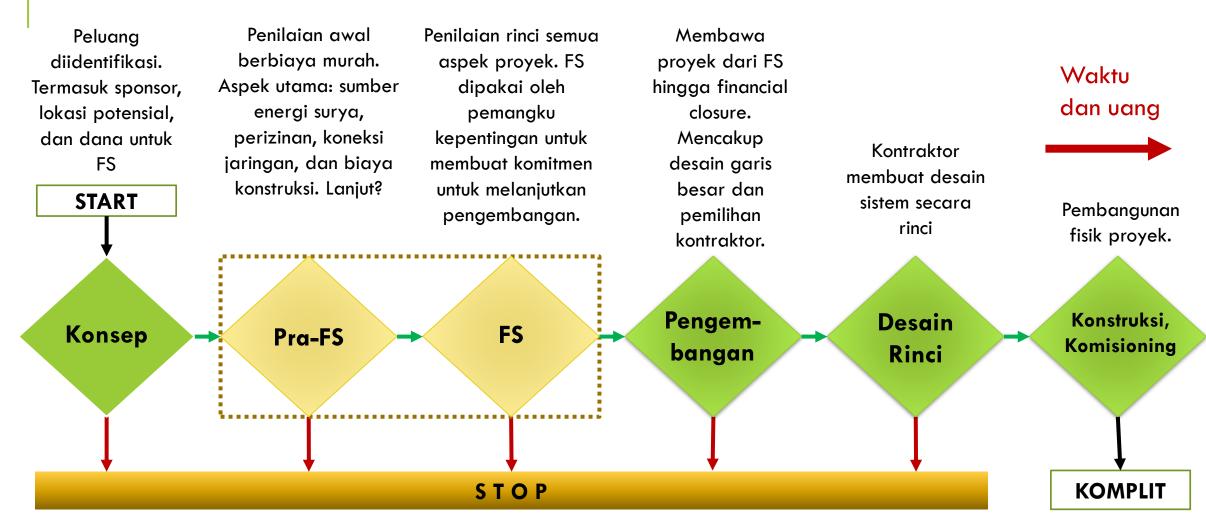
PLTS Terpusat

Off-grid, stand-alone, jaringan lokal, biasanya antara 1 kWp s/d 1000 kWp, misal: program listrik desa, peluang kecil karena RE \approx 100%.

PLTS on-grid

On-grid, parallel dengan grid PLN, biasanya > 1 MWp, misal: PLTS skala utilitas, peluang makin besar. PLTS rooftop?

LOKASI INSTALASI PLTS



FASE PROYEK PLTS

► Stop

MENGAPA PERLU FS PLTS SKALA UTILITAS?

Pembuat keputusan seringkali tidak familiar dengan teknologi PLTS. Panduan awal yang menunjukkan potensi yang baik untuk implementasi PLTS meliputi:

- Ada kebutuhan pembangkit listrik,
- Suplai listrik untuk konstruksi baru atau renovasi,
- Biaya energi konvensional tinggi,
- Keinginan pemangku kepentingan utama,
- Akses mudah ke pendanaan: subsidi dan hibah,
- Sumber daya energi surya memadai: sumber melimpah menarik secara finansial.

Faktor-faktor tersebut perlu dianalisis.

MENGAPA PERLU FS PLTS SKALA UTILITAS?

Peraturan Menteri ESDM Nomor 19 Tahun 2016 tentang Pembelian Tenaga Listrik dari Pembangkit Listrik Tenaga Surya Fotovoltaik oleh PT PLN.

Pasal 14
Calon Pengembang PLTS Fotovoltaik melengkapi persyaratan:

- a) rekapitulasi perhitungan sendiri TKDN untuk keseluruhan sistem PLTS Fotovoltaik;
- b) bukti sertifikat uji modul surya fotovoltaik dan inverter;
- c) studi kelayakan (feasibility study); dan
- d) studi penyambungan (interconnection study).

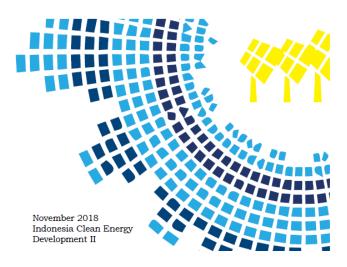
Menunggu Perpres
Harga Listrik EBT.
Draft: Harga jual
listrik PLTS 1 MW s/d
25 MW dari tahun 1
– 8: US\$ 12,19 sen
per kWh (Rp 1828).

INDIKATOR KELAYAKAN

Alat ukur yang digunakan pengambil keputusan (payback period, IRR, NPV, LCOE), adalah faktor dari:

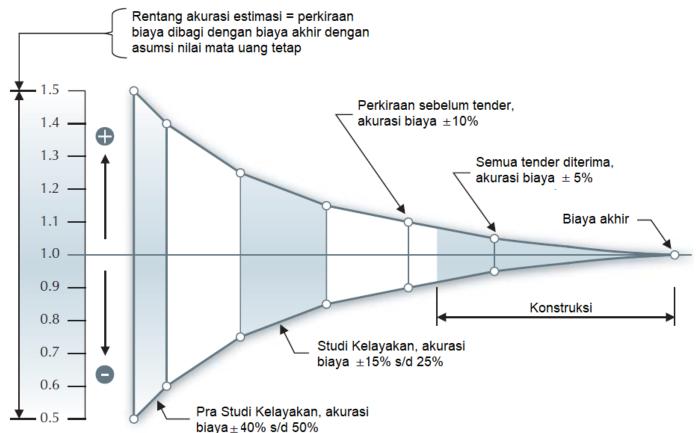
- Sumber energi tersedia (radiasi, suhu, clearness index),
- Kinerja peralatan (misalnya PR),
- Biaya: awal, tahunan, periodik,
- Pembiayaan (rasio & jangka waktu hutang, tingkat bunga),
- Pajak peralatan & pendapatan,
- Karakteristik lingkungan dari energi yang digantikan (batu bara, gas alam, minyak, PLTA besar, nuklir),
- Kredit lingkungan dan/atau subsidi (carbon credit, kredit GRK, hibah)

PLTS TERPUSAT VS ON-GRID


FS PLTS Terpusat



PANDUAN


STUDI KELAYAKAN PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) TERPUSAT

FS PLTS on-grid

FASE PROYEK PLTS

Akurasi biaya di setiap fase proyek PLTS

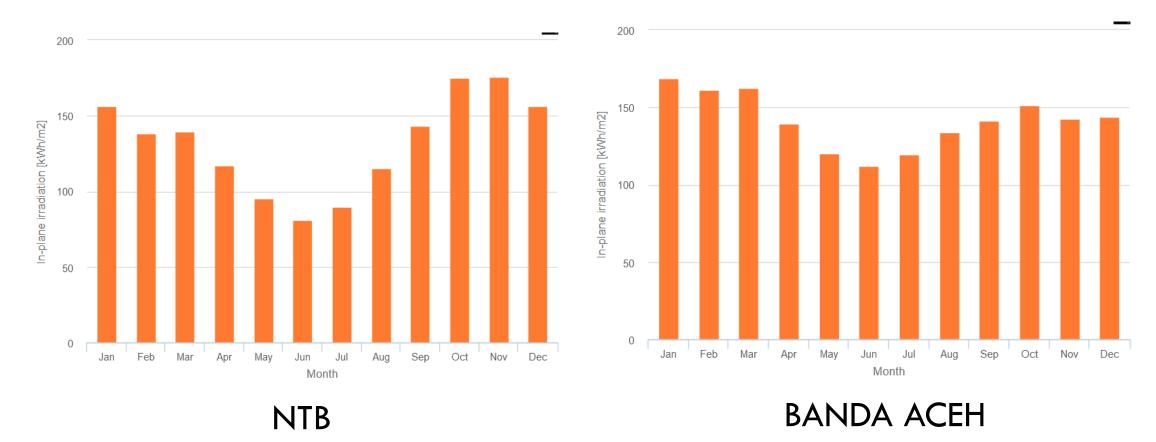
Minister of Natural Resources Canada 2001-2005

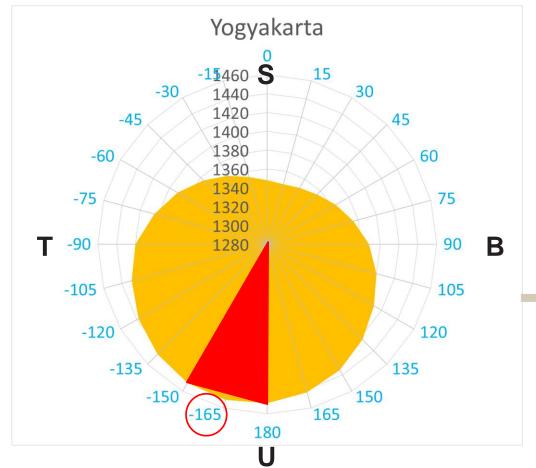
BAHASAN HARI INI

- FS adalah tugas besar (1 MK di TE UIN Suska)
- Bahasan hari ini dibatasi pada aspek paling penting dari FS:
 - Survei Lokasi
 - Shading analysis
 - Data meteorologi
 - Analisis produksi energi
 - Analisis finansial (lebih rinci)

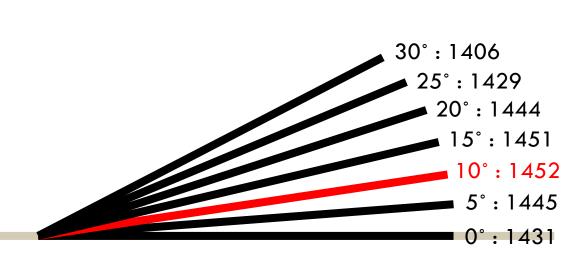
Dikombinasikan dengan analisis menggunakan GIS dan data monitoring.

- Koordinat: Lintang, Bujur, Ketinggian (dpl)
- Luas
- Peta topografi
- Data iklim: T (min, maks), RH (maks), RR (tahunan), P, petir (freq.)
- Sumber energi surya (radiasi W/m² dan kWh/m²)
- Lahan: luas, karang, batu, pasir, mahal, pertanian, hutan, erosi, drainase, kepemilikan, dll
- Fungsi lahan, kesiapan lahan.
- Titik koneksi: tegangan (JTR, JTM), jarak, kapasitas GI/GD (MW)
- Instalasi lain di lahan: PAM, listrik, gas, minyak, pembuangan, dll.
- Akses ke lokasi: kondisi jalan, jarak dari pelabuhan terdekat.





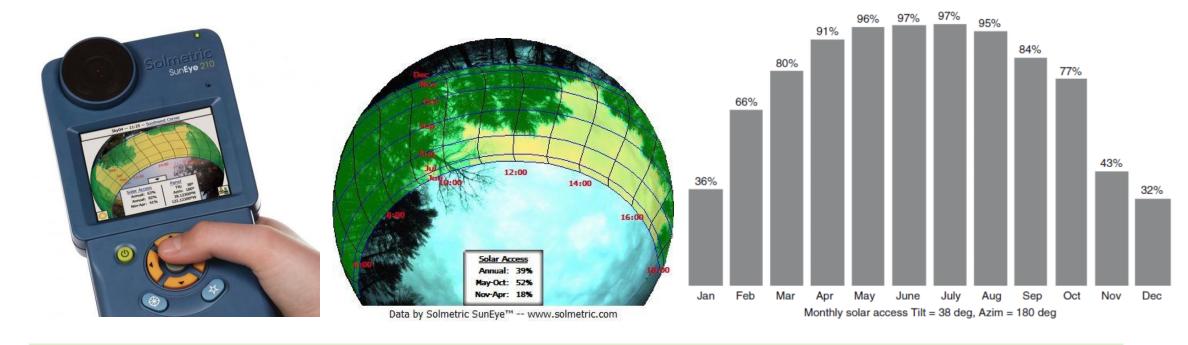
TOPOGRAFI


SUMBER ENERGI SURYA

ORIENTASI

KEMIRINGAN

SHADING ANALYSIS


Solar Pathfinder® (tradisional tapi akurat)

SHADING ANALYSIS

Solmetric SunEyeTM (sedikit modern dan akurat)

Beberapa software desain dan simulasi PLTS juga dilengkapi shading analysis, namun dengan akurasi lebih rendah

DATA METEOROLOGI

- Parameter: suhu (maks, min, ave.), radiasi (Gh, Gi), RH, RR, WS, lightning)
- Ground measurement di lokasi proyek (paling akurat, mahal, data terbatas)
- Ground measurement di lokasi terdekat (BMKG).
- Satelit & modelling:

NASA-POWER

EU-PVGIS

ANALISIS PRODUKSI ENERGI

RUMUS

$$P_{ac}(t) = P_{array,stc} \times \left\{ \frac{G(t)}{1000} \right\}$$

$$x \left\{ 1 + \frac{\%\gamma_{pmp}}{100} \right\} (T(t) - 25)$$

$$x f_{debu}$$

$$x f_{mm}$$

$$x f_{kabel}$$

$$x f_{inv}$$

Daya dibangkitkan

- Rugi-rugi =

Rugi-rugi karena suhu

- + Rugi-rugi karena debu (0.97)
- + Rugi-rugi module mismatch (0.98)
- + Rugi-rugi kabel (0.95 0.99)
- + Rugi-rugi inverter

$$E_{ac}(t)=P_{ac}(t) \times T$$

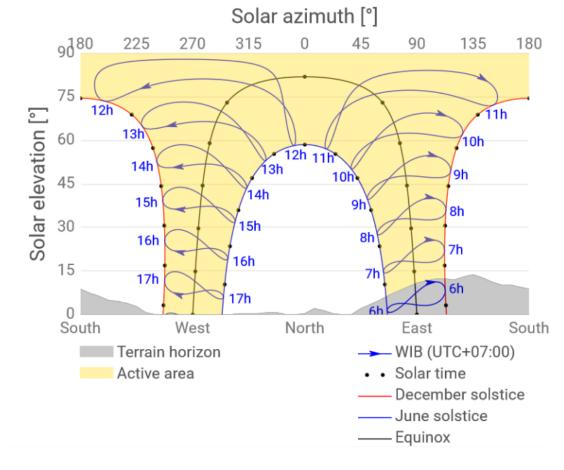
Seloharjo - DIY -07°58'54", 110°21'32"

Ground-mounted large scale

Azimuth of PV panels: 195°

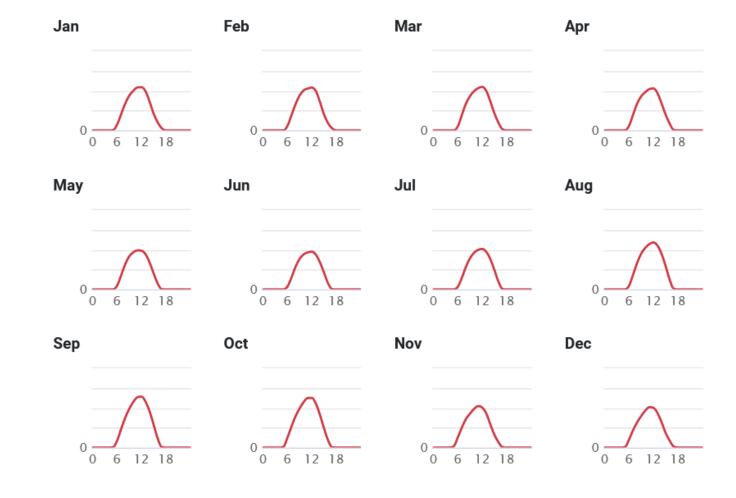
Tilt of PV panels: 10°

Installed capacity: 5000 kWp


Map data

Direct normal irradiation	DNI	1260	kWh/m² ▼
Global horizontal irradiation	GHI	1843	kWh/m² ▼
Diffuse horizontal irradiation	DIF	909	kWh/m² ▼
Global tilted irradiation at optimum angle	GTI opta	1880	kWh/m² ▼
Optimum tilt of PV modules	OPTA	12 / 0	0
Air temperature	TEMP	24.2	°C ▼
Terrain elevation	ELE	311	m 🕶

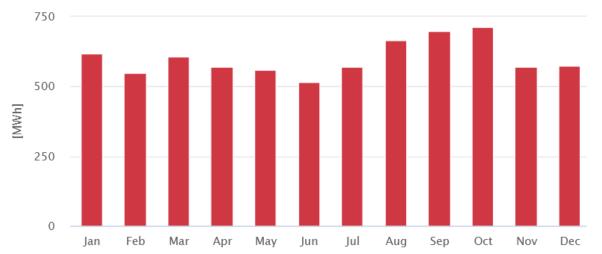
PVOUT map



Horizon and sunpath


Average hourly profiles

Total photovoltaic power output [MWh]


Average hourly profiles

Total photovoltaic power output [MWh]

Monthly averages

Total photovoltaic power output

Annual averages

Total photovoltaic power output and Global tilted irradiation

7.215

215

GWh per year ▼

kWh/m² per year ▼

Rp. 13,2 M/tahun (menurut draft Perpres harga listrik EBT, Rp 1828/kWh)

Biaya modal: Rp. 52,5 M.

PBP = 4 tahun.

Jenis biaya:

- Biaya awal
- Biaya tahunan
- Penghematan Tahunan
- Biaya periodik

Biaya awal

Studi kelayakan	System Devt.	Teknik	Sistem pembangkit	Keseimbangan sistem & dll.
 1-5% dari total biaya. Survei lokasi, Penilaian sumber surya, Dampak lingkungan, Desain awal, perkiraan biaya rinci, studi dasar GRK, rencana pemantauan (MP), laporan akhi, manajemen proyek FS, biaya perjalanan. 	 Negosiasi kontrak Izin & persetujuan Survei lokasi & hak atas tanah Validasi & registrasi GRK Pembiayaan proyek Hukum & akuntansi Manajemen proyek Perjalanan 	 Desain lokasi & bangunan Desain mekanik Desain kelistrikan Desain sipil Tender & kontrak Pengawasan konstruksi 	 Peralatan listrik Pembangunan jalan Saluran transmisi Gardu Induk Tindakan efisiensi energi Shipment 	 Biaya khusus Konstruksi gedung Suku cadang Angkutan Pelatihan & komisioning Kontinjensi Bunga selama konstruksi

Biaya awal

Studi kelayakan

- •Survei lokasi:
- o bertemu pemangku kepentingan,
- o mengumpulkan data desain PLTS,
- evaluasi kondisi lokasi: akses matahari dan persyaratan untuk memasang sistem PV.
- o analisis dibantu dengan gambar arsitektur atau survei tanah.
- O Untuk sistem besar: 2 orang ahli selama 1 hari penuh.
- Penilaian sumber surya,
- Penilaian dampak lingkungan awal,
- Desain awal
- o kapasitas sistem optimal,
- o ukuran dan tata letak struktur dan peralatan, dan
- o perkiraan jumlah konstruksi yang diperlukan untuk perkiraan biaya terperinci.

- perkiraan biaya rinci (berdasarkan hasil desain awal dan investigasi lain selama studi kelayakan,
- •studi dasar GRK
- Supaya pengurangan emisi GRK dari proyek PLTS diakui dan dijual di pasar karbon domestik atau internasional,
- studi baseline GRK (rencana perluasan jaringan, pola konsumsi bahan bakar, dll)
- Rencana Pemantauan (MP) (data untuk memantau pengurangan emisi dari proyek, dan metodologi).
- •laporan akhir
- •manajemen proyek FS.

Biaya awal

System Development

Dilakukan setelah hasil FS positif (di Indonesia, FS, system development, dan detailed desain termasuk di dalam FS).

- Negosiasi kontrak (negosiasi Power Purchase Agreement (PPA), terutama tarif penjualan listrik ke PLN),
- Izin (sesuai regulasi, misal: izin lingkungan, penggunaan lahan, penggunaan sumber daya air, dll. di tingat Kab/Kota, Provinsi, dan Pusat),
- Survei lokasi & hak atas tanah (status kepemilikan lahan, perencanaan penggunaan lahan, ukuran, serta kemungkinan masalah hukum. Jalan akses, jalur transmisi dan distribusi, gardu induk.

- Validasi & registrasi GRK (validasi oleh pihak ketiga yang independen, biaya pendaftaran ke UNFCCC),
- Pembiayaan proyek (menegosiasikan kontrak dengan PLN, PPA, menyiapkan dokumen hukum, mengidentifikasi investor dan mengumpulkan dana),
- Hukum & akuntansi (mendirikan perusahaan untuk mengembangkan proyek, menyiapkan laporan keuangan bulanan dan tahunan, akuntansi proyek, dll.)
- Manajemen proyek (biaya pengelolaan semua fase pengembangan proyek (tidak termasuk FS dan pengawasan konstruksi), humas.

Biaya awal

Teknik

- Desain lokasi & bangunan (menentukan dan menggambar penempatan fisik),
- Desain mekanik (desain struktur penyangga, makin sulit di kontur tidak rata),
- Desain kelistrikan (integrasi PLTS ke grid, modul PV dan koneksi inverter, sekering, dan konduktor),
- Desain sipil (perencanaan konstruksi bangunan, fondasi, akses jalan, dan sistem tanah lainnya. Tingkat kesulitan ditentukan oleh akses, kondisi tanah, drainase permukaan, dan kondisi fisik lainnya),
- Tender & kontrak (dikerjakan setelah tugas teknik, tender disiapkan untuk pemilihan kontraktor. Proses kontrak diperlukan untuk menegosiasikan dan menetapkan kontrak untuk penyelesaian proyek),
- Pengawasan konstruksi (konsultan pengawas),

Biaya awal

Sistem Pembangkit

- Komponen pada sistem PLTS,
- Pembangunan jalan,
- Saluran transmisi (jenis, panjang, tegangan, lokasi dan kapasitas terpasang PLTS, kabel udara/bawah tanah),
- Gardu Induk (tergantung lokasi, tegangan, dan kapasitas terpasang PLTS, mungkin butuh tambahan seperti beban, pembuang panas, bank kapasitor, peralatan pemantauan, sistem kontrol terintegrasi atau SCADA),
- Tindakan efisiensi energi (biaya untuk langkah efisiensi energi, termasuk biaya peralatan dan instalasi).

Biaya awal

Keseimbangan sistem & dll.

- Biaya khusus (inverter, struktur penyangga [pakai trakcer/tidak], jasa instalasi),
- Konstruksi gedung dan halaman,
- Suku cadang (tingkat inventaris bergantung pada keandalan sistem, garansi, kesulitan transportasi, dan ketersediaan stok),
- Shipments/transport (komponen PLTS dan konstrksi, kendali logistik sangat penting),
- Pelatihan & komisioning (biasanya murah, karena PLTS sederhana dan perawatan minimal),
- Kontinjensi (15-25% dari biaya BoS),
- Bunga selama konstruksi (tergantung pada durasi konstruksi dan biaya, bervariasi antara 3 dan 15% dari biaya proyek).

Biaya tahunan

O&M

- Sewa tanah (pemilik lahan minta kompensasi, negosiasi dengan lahan milik pemerintah),
- Sewa perlaatan/fasilitas lain,
- Pajak properti,
- Asuransi (kerusakan properti, kegagalan peralatan, gangguan bisnis),
- Suku cadang (biasanya peralatan kontrol dan inverter),
- Tenaga kerja (pemantauan, pemeriksaan rutin peralatan, membersihkan kotoran dan debu),
- Pemantauan & verifikasi GRK (jika proyeh CDM atau memiliki CER),
- CSR
- Administrasi Umum (pembukuan, persiapan laporan tahunan, biaya bank, komunikasi, dll.),
- Kontinjensi (tergantung akurasi FS, biasanya 10-20% dari biaya O&M).

Biaya Periodik

- Biaya berulang yang dikeluarkan secara berkala untuk menjaga proyek tetap beroperasi.
- Tagihan biaya periodik.

ANALISIS FINANSIAL

Parameter Finansial

- Umum
 - Eskalasi biaya bahan bakar
 - Laju inflasi
 - Nilai diskon (biasanya 6-11%)
 - Tingkat investasi kembali ()
 - Usia proyek
- Finansial
 - Insentif dan hibah,
 - Rasio utang (utang/(utang+equity),
 - Utang,
 - Equity (porsi dari total investasi yang didanai langsung oleh pemilik fasilitas),

- Tingkat bunga hutang
- Jangka waktu hutang
- Pembayaran hutang tahunan
- Analisis pajak penghasilan
 - Tarif pajak penghasilan
 - O Tersedia tax holiday?
 - Durasi taks holiday.
- Pengehematan dan pemasukan
 - Penghematan tahunan (biaya BBM,
 - Pemasukan tahunan (penjualan listrik, penjulan karbon/GHG,
 - Pemasukan lain.

ANALISIS FINANSIAL

Kelayakan Finansial

- Tingkat Pengembalian Internal (IRR) Sebelum Pajak ekuitas (%)
 - Laba atas ekuitas (return on equity/ROE) atau laba atas investasi (return on investment/ROI), sebelum pajak penghasilan,
 - o IPP membandingkan IRR dengan IRR yang disyaratkan (biasanya, biaya modal).
 - Jika IRR => IRR yang disyaratkan, maka proyek layah secara finansial.
- Tingkat Pengembalian Internal (IRR) Sebelum Pajak aset (%)
 - Dihitung berdasarkan asset.
- Pengembalian sederhana (simple payback) tahun
 - o lamanya waktu untuk mengembalikan modal, dari pendapatan atau penghematan yang dihasilkan.
 - o semakin cepat biaya modal kembali, semakin diinginkan investasi tersebut.
 - bukan ukuran seberapa menguntungkan satu proyek, tidak boleh digunakan sebagai indikator evaluasi utama.
 - o berguna sebagai indikator sekunder untuk menunjukkan tingkat risiko investasi.
- Pengembalian ekuitas (equity payback) tahun
 - o lamanya waktu untuk mengembalikan ekuitas.

ANALISIS FINANSIAL

Kelayakan Finansial

Menurut Peraturan Menteri ESDM Nomor 19 Tahun 2016

1. Ringkasan

2. Pendahuluan dan Latar Belakang Proyek

- 2.1 Kebutuhan akan Proyek
- 2.2 Potensi Manfaat dari Proyek
- 2.3 Pihak-pihak yang terlibat dalam Proyek (Owner, Utilitas, Pemerintah, Pemodal, dll).

3. Deskripsi Teknologi dan Latar Belakang

- 3.1 Ikhtisar Fotovoltaik
 - 3.1.1 Pasar Fotovoltaik Global
- 3.2 Teknologi Film Tipis, Kristal
- 3.3 Inverter String, Pusat
 - 3.3.1 Fitur Koneksi Jaringan
 - 3.3.2 Umur

- 3.3 *Inverter String*, Pusat
 3.3.1 Fitur Koneksi Jaringan
 - 3.3.2 Umur
- 3.4 Sistem Kontrol

4. Sektor Kelistrikan Nasional di Negara/Wilayah/Daerah

- 4.1 Pembangkit Terpasang, termasuk Energi Terbarukan
- 4.2 Target Energi Terbarukan, dan bagaimana proyek akan memenuhi target tersebut
- 4.3 Kepemilikan/Struktur Market (misalnya Utilitas Tunggal, Deregulasi)
- 4.4 Persyaratan Konten Lokal
- 4.5 Pembahasan Dampak Proyek Terbarukan untuk Mengurangi Konsumsi Diesel
- 4.6 Pedoman Kebijakan Indonesia dan Ketersediaan Insentif

5. Informasi Lokasi

- 5.1 Peta/Foto/Lokasi
- 5.2 Rincian Kepemilikan Lokasi
- 5.3 Jarak Transportasi, Kota Terdekat, Transmisi Terdekat
- 5.4 Kondisi Iklim
- 5.5 Rincian Vegetasi dan Analisis

6. Penilaian Lokasi

- 6.1 Peninjauan Tempat dengan Peta Topografi yang Rinci
- 6.2 Laporan Kunjungan Tempat
- 6.3 Analisis Geoteknik Awal
- 6.4 Laporan Hidrologi dan/atau Penilaian Banjir
- 6.5 Penilaian Geologi dan Resiko Gempa
- 6.6 Penilaian Konstruksi Gedung
 - 6.6.1 Air, Listrik, Laydown Area, Parkir untuk Pekerja, Ketersediaan Tenaga Kerja Lokal, dll
- 6.7 Penilaian Logistik
- 6.8 Keamanan dan Keselamatan

7. Penilaian Dampak Lingkungan dan Sosial

- 7.1 Penilaian Lingkungan Awal
- 7.2 Penilaian Lingkungan dan Sosial

8. Rekayasa Teknik

- 8.1 Seleksi Peralatan Utama/Asumsi
- 8.2 Rancangan Blok
- 8.3 Electrical Single Line Diagram (AC Dan DC)
- 8.4 Tata Letak Tempat
- 8.5 Sistem Kontrol dan Monitoring
- 8.6 Daftar Gambar

9. Studi Interkoneksi Jaringan

- 9.1 Perjanjian Penyambungan
- 9.2 Pengaturan untuk Kemudahan
- 9.3 Karakteristik Substation Tegangan, Jalur, Beban Lokal, Rencana untuk Ekspansi, dll
- 9.4 Hasil Studi Dampak Sistem

10. Penilaian Energy Yield

- 10.1 Penilaian Sumber Tenaga Surya
- 10.2 Penilaian Lokasi
- 10.3 Masukan Model Tenaga Surya dan Asumsi
- 10.4 Hasil Energy Yield
 - 10.4.1 Hasil Untung dan Rugi
 - 10.4.2 Analisis Ketidakpastian Hasil P50/P90

11. Jadwal Proyek

12. Konstruksi dan Implementasi

- 12.1 Struktur Kontrak
- 12.2 Pendekatan Konstruksi dan Rencana
- 12.3 Pendekatan Konten Lokal
- 12.4 Serah Terima

13 Perkiraan Modal dan Biaya Operasi

- 13.1 Capital Expenditures
 - 13.1.1 Pemasok Peralatan yang Berpotensi
- 13.2 Operational Expenditures
 - 13.2.1 Soft Cost seperti Asuransi, Administrasi, dll

14 Penilaian Keuangan

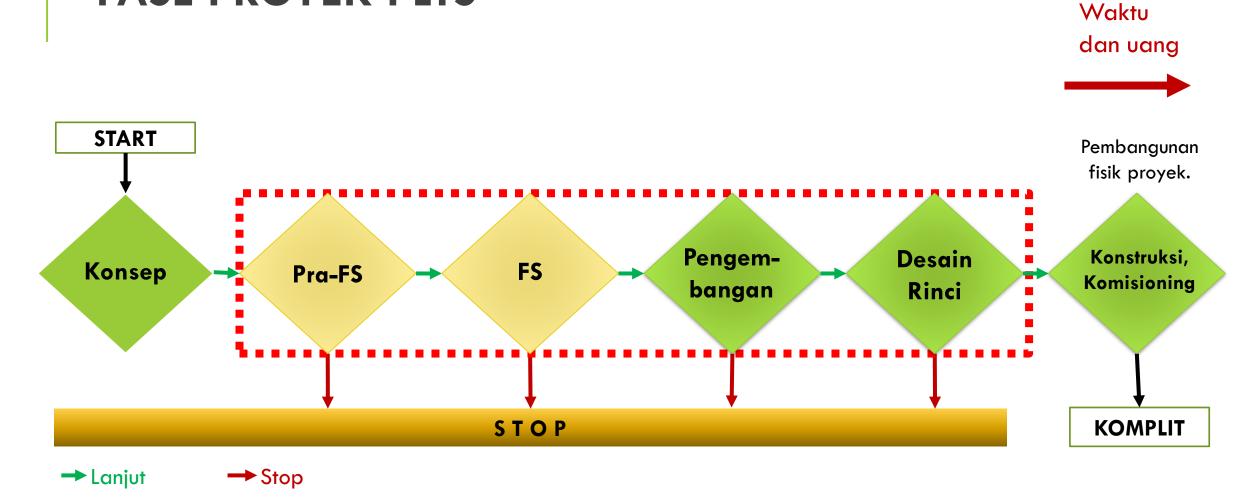
- 14.1 Asumsi
- 14.2 Biaya Turnkey EPC
- 14.3 Biaya Commissioning

15 Penilaian Resiko

- 15.1 Resiko dari Perspektif PT PLN (Persero)
- 15.2 Resiko dari Perspektif Calon Pengembang

PLTS Fotovoltaik

15.3 Mitigasi Resiko


16. Operasi dan Pemeliharaan

- 16.1 Sistem Kontrol dan Monitoring
- 16.2 Pemeliharaan Terjadwal dan Tidak Terjadwal
- 16.3 Frekuensi Kegagalan Komponen
- 16.4 Kebutuhan Suku Cadang di Lokasi
- 16.5 Waktu yang dibutuhkan untuk
- Mengganti/Memperbaiki Komponen Utam

17. Decommissioning

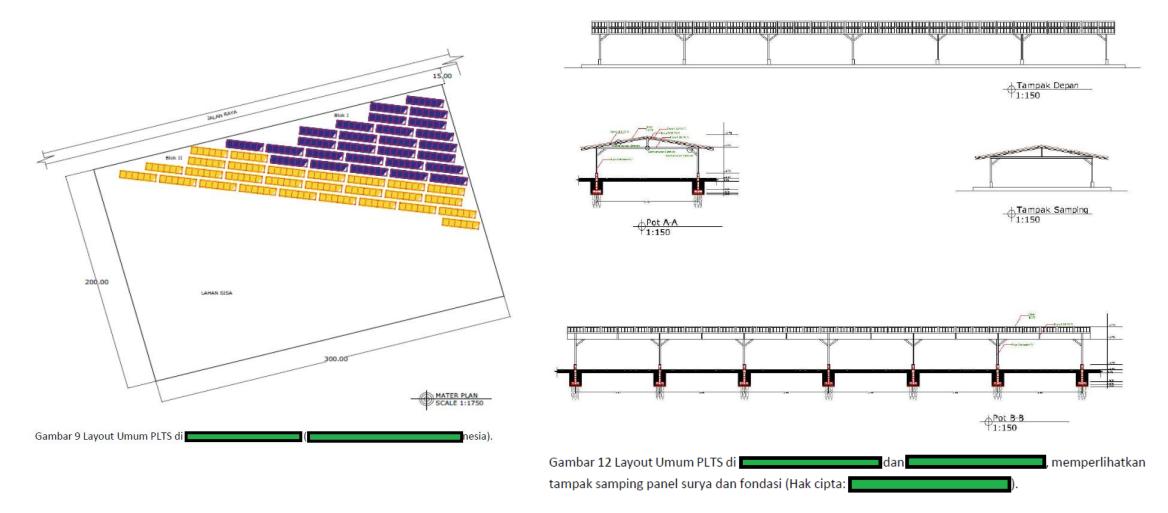
18. Warranty Service

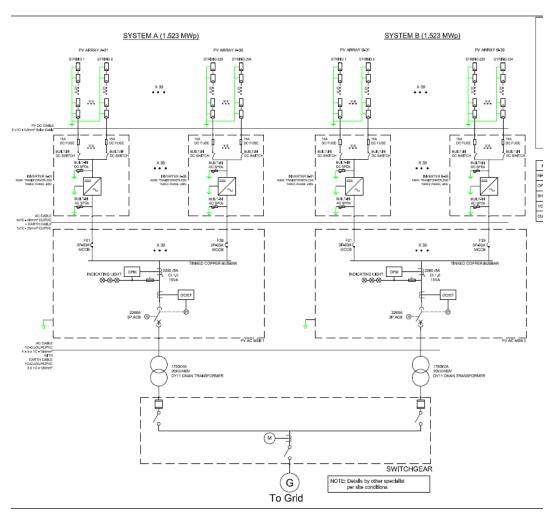
FASE PROYEK PLTS

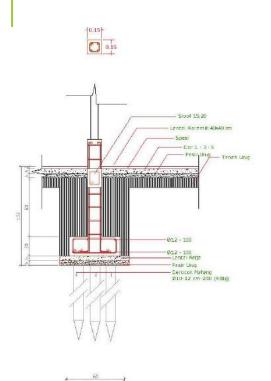
STUDI KELAYAKAN

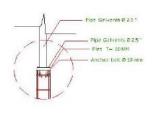
Pembangkit Listrik Tenaga Surya Fotovoltaik 2 MWp dan 3 MWp Tersambung Jaringan Listrik PLN di

September 2015


Kedua lokasi berada dekat dengan jalan beraspal. Jenis tanah pada kedua lokasi proyek adalah tanah keras sehingga tidak memerlukan perlakuan tambahan sebelum pemasangan bingkai dan struktur panel PLTS, kecuali pembersihan lahan. Gambar 5 dan Gambar 6 memperlihatkan foto lokasi proyek di






STUDI KELAYAKAN PLTS FOTOVOLTAI 2 MWP DAN 3 MWP - SEPTEMBER 2015

2015

NAMA FRAME	5111	50%200)
PDSIS1	TUHPUAN	DAPANSAN
SKETSA	0.15	0.15
TULANGANATAS	2 812	2.012
TUL. PINCISANS		- 4
LILANGAN BASSAH	2.892	5 013
SENGKANG	ØX.04150	@10-200

NAMA FRANC	KP L1	KP LIEUKIEU			
PDS(S)	TUNEUM	LAFANSAS			
SKETSA	0.15	0.15			
TULANGARATAS	2.012	2.012			
TUL PINGGARG	#				
TULANGAN BAWAH	2.012	3,012			
SENGRANG	Ø1.0-150	Ø10-200			

PENULANGAN Kolom Praktis

Tabel 22 Biaya investasi awal sistem PLTS 3 MWp di

aya Investasi Awal)	Satuan	Kuantitas	Unit cost	Jumlah	Biaya Relatif
Studi Kelayakan					
UKL-UPL	p-d	1	\$ 4,200	\$ 4,200	
Konsultan Studi Kelayakan	cost	1	\$ 4,200	\$ 4,200	
Subtotal:				\$ 8,400	0.1%
Pengembangan					
Kontrak dan Negosiasi	p-d	1	\$ 1,100	\$ 1,100	
Perizinan	p-d	1	\$ 1,100	\$ 1,100	
Subtotal:				\$ 2,200	0.0%
Power system					
Komponen sistem, instalasi, komissioning	kW	3,000.00	\$ 2,275	\$ 6,825,000	
Subtotal:				\$ 6,825,000	88.5%
Lain-lain					
Biaya tenaga kerja tidak langsung	cost	3	\$ 68,175	\$ 204,525	
Biaya tenaga kerja langsung	cost	3	\$ 45,000	\$ 135,000	
Bangunan dan infrastruktur	cost	3	\$ 135,000	\$ 405,000	
Persiapan Lahan	cost	1	\$ 1,574	\$ 1,574	
Pajak Selama Konstruksi	2.50%	16 bulan	\$ 7,581,699	\$ 126,362	
Subtotal:				\$ 872,461	11.3%
al Biaya Investasi Awal				\$ 7,708,061	100.0%

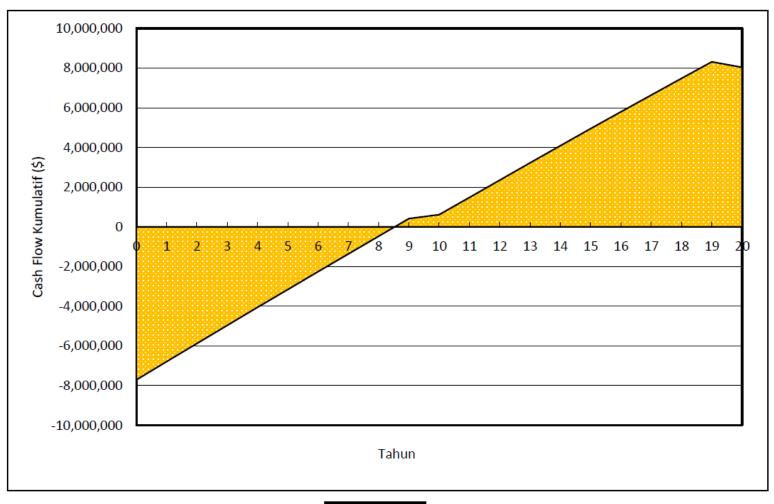
Gambar 13 Layout Umum PLTS di dan dan detail fondasi (Hak cipta:

Tabel 23 Biaya tahunan sistem PLTS 3 MWp di

Annual costs (credits)	Unit	Quantity	Unit cost	Amount
O&M				
Sewa lahan	project	12	\$ 3,450	\$ 41,400
PBB	project	1	\$ 37	\$ 37
Gaji Karyawan	project	13	\$ 1,200	\$ 15,600
CSR	project	1	\$ 700	\$ 700
Umum dan Administrasi	%	4.0%	\$ 57,737	\$ 2,309
Perawatan	cost	2	\$ 10,500	\$ 21,000
Kontingensi	%		\$ 81,047	\$ -
Total Biaya per Tahun:				\$ 81,047

Tabel 24 Biaya periodik sistem PLTS 3 MWp di

Periodic costs (credits)	Unit	Year	Unit cost	Amount
Inverter	cost	10	\$ 477,360	\$ 477,360
End of project life	cost	21	\$ 37,500	\$ 37,500


Tabel 31 Parameter Analisis Finansial PLTS

Parametr Finansial			
Umum			
	Laju Inflasi	%	4.0%
	Discount rate	%	8.0%
	Umur Proyek	tahun	20
Analisis Pajak Penghasil	an	_	
	Pajak penghasilan efektif	%	2.5%
	Tax holiday duration	yr	
Pemasukan Tahunan			
Pendapatan dari Ekspor	t Listrik		
	Listrik dieksport ke PLN	MWh	4,100
	Harga eksport listrik	\$/MWh	250.00
	Pemasukan dari eksport listrik	\$	1,025,045

Cash flow tahunan, mulai dari tahun nol, yaitu tahun investasi awal hingga tahun ke 20 saat sistem dibongkar, diperlihatkan pada Tabel 32 berikut.

Tabel 32 Cash flow tahunan PLTS

Cash Flow Tah	unan			
	Tahun	Sebelum pajak	Sesudah pajak	Kumulatif
	#	\$	\$	\$
0	-7,708,061	-7,708,061		-7,708,061
1	940,756	917,237		-6,790,823
2	937,385	913,950		-5,876,873
3	933,878	910,531		-4,966,342
4	930,232	906,976		-4,059,366
5	926,439	903,278		-3,156,088

CAPEX: Rp 35 ribu/Wp

Gambar 15 Grafik cash flow kumulatif PLTS

Tabel 34 Parameter Kelayakan Finansial PLTS

Kelayakan Finansial			
	Pre-tax IRR - equity	%	9.2%
	Pre-tax IRR - assets	%	9.2%
	After-tax IRR - equity	%	8.9%
	After-tax IRR - assets	%	8.9%
	Simple payback	yr	8.2
	Equity payback	yr	8.5
	Net Present Value (NPV)	\$	459,079
	Annual life cycle savings	\$/yr	46,758
	Benefit-Cost (B-C) ratio		1.06
	Debt service coverage		No debt
	Energy production cost	\$/MWh	238.31

Discussion

kunaifi@uin-suska.ac.id WA/telegram: +62823 8132 8424